

3	(i)	Because $\mathrm{P}(T \mid M) \neq \mathrm{P}(T)$	$\begin{aligned} & \text { E1 } \\ & \text { [1] } \end{aligned}$	Or $0.8 \neq 0.55$	Or $\mathrm{P}(T \cap M)(=0.264) \neq \mathrm{P}(T) \times \mathrm{P}(M)$, provided 0.264 in (ii) Or $0.264 \neq 0.55 \times 0.33(=0.1815)$ Look out for complement methods, etc
	(ii)	$\mathrm{P}(T \cap M)=\mathrm{P}(T \mid M) \times \mathrm{P}(M)=0.80 \times 0.33=0.264$	$\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \\ & {[2]} \\ & \hline \end{aligned}$	For product CAO	A0 for 0.26

(iii)

G1 For two labelled intersecting circles
G1 For at least 2 correct probabilities. FT their $\mathrm{P}(T \cap M)$
G1
For remaining probabilities. FT their $\mathrm{P}(T \cap M)$, providing probabilities between 0 and 1

Allow labels such as $\mathrm{P}(\mathrm{T})$ etc
Allow other shapes in place of circles
No need for 'box'
FT from 0.1815 in (ii) gives 0.3685 , 0.1815, 0.1485, 0.3015

4 (i)	$\mathrm{P}(X=0)=0.75^{6}=0.178$	M1 for 0.75^{6} A1 CAO	2	Or from tables 0.1780 Or 729/4096 Allow 0.18 with working
(ii)	$\mathrm{E}(X)=n p=50 \times 0.178=8.9$	M1 for product A1 FT	2	FT their answer to (i) providing it's a probability NB A0 if subsequently rounded
		TOTAL	4	

$\begin{array}{\|l} \hline 5 \\ \mathbf{(i)} \end{array}$		G1 for two labelled intersecting circles G1 for at least 2 correct probabilities. G1 for remaining correct probabilities	3	Allow labels such as $\mathrm{P}(W)$ and $\mathrm{P}(F)$ Allow other sensible shapes in place of circles
(ii)	$\mathrm{P}(W) \times \mathrm{P}(F)=0.14 \times 0.41=0.0574 \neq \mathrm{P}(W \cap F)=0.11$ So not independent.	M1 for 0.41×0.14 A1 Condone dependent Must have full method www Must have either $\mathrm{P}(W \cap F)$ or 0.11	2	Answer of 0.574 gets Max M1A0 Omission of 0.0574 gets M1A0 Max Or: $\mathrm{P}(W \mid F)=0.11 / 0.41=0.268 \neq \mathrm{P}(W)(=0.14) \mathrm{M} 1$ for full working $\mathrm{P}(F \mid W)=0.11 / 0.14=0.786 \neq \mathrm{P}(F)(=0.41) \mathrm{M} 1$ for full working No marks without correct working
(iii)	$P(W \mid F)=\frac{P(W \cap F)}{P(F)}=\frac{0.11}{0.41}=\frac{11}{41}=0.268$ This is the probability that a randomly selected respondent works (part time), given that the respondent is female.	M1 for correct fraction A1 E1 For E1 must be in context - not just talking about events F and W	3	Allow 0.27 with working Allow $11 / 41$ as final answer Condone 'if' or 'when' for 'given that' but not the words 'and' or 'because' or 'due to' for E1. E1 (independent of M1): the order/structure must be correct i.e. no reverse statement Allow 'The probability that a randomly selected female respondent works part time’ oe
		TOTAL	8	

$\begin{aligned} & \hline \mathbf{6} \\ & \text { (i) } \end{aligned}$	$\mathrm{P}($ product of two scores $<10)=\frac{13}{16}=0.8125$	B1	1	Allow 0.813 or 0.812
(ii)	$\begin{aligned} & \mathrm{P}(\text { even }) \times \mathrm{P}(<10)=0.5 \times \frac{13}{16}=\frac{13}{32}=0.40625 \\ & \mathrm{P}(\text { even } \cap<10)=\frac{6}{16}=0.375 \end{aligned}$ So not independent.	M1 for $0.5 \times \frac{13}{16}$ or $\frac{13}{32}$ FT their answer to (i) M1 for $\frac{6}{16}$ A1	3	Do not allow these embedded in probability formulae Also allow $\mathrm{P}($ even $\mid<10)=6 / 13 \neq \mathrm{P}($ even $)=1 / 2$ Or $\mathrm{P}(<10 \mid$ even $)=6 / 8 \neq \mathrm{P}(<10)=13 / 16$ Or $\mathrm{P}($ even $\mid<10)=6 / 13 \neq \mathrm{P}\left(\right.$ even $\left.\mid<10^{\prime}\right)=2 / 3$ Or $\mathrm{P}(<10 \mid$ even $)=6 / 8 \neq \mathrm{P}(<10 \mid$ even' $)=7 / 8$ For all of these alternatives allow M2 for both probabilities. (M1 not available except if they correctly state both probabilities EG $\mathrm{P}($ even $\mid<10)$ and $\mathrm{P}($ even $)$ and get one correct) If they do not state what probabilities they are finding, give M2 for one of the above pairs of probabilities with \neq symbol
		TOTAL	4	

$\begin{aligned} & \hline 7 \\ & \text { (i) } \end{aligned}$	$\begin{gathered} \mathrm{P}(\text { Wet and bus })=0.4 \times 0.7 \\ =0.28 \end{gathered}$	M1 for multiplying probabilities A1 CAO	2	Fractional answer $=7 / 25$ (Allow 28/100)
(ii)	$\begin{aligned} & \mathrm{P}(\text { Walk or bike })= \\ & 0.6 \times 0.5+0.6 \times 0.4+0.4 \times 0.2+0.4 \times 0.1 \text { or } \\ & 0.3+0.24+0.08+0.04 \\ & =0.66 \end{aligned}$	M1 for any two correct pairs M1 for sum of all four correct terms With no extra terms for second M1 A1 CAO	3	Or $=0.6 \times 0.9+0.4 \times 0.3$ gets M1 for either term $=0.54+0.12$ gets M1 for sum of both A1 CAO $\mathrm{Or}=1-0.6 \times 0.1-0.4 \times 0.7=0.66$. M1 for $1-$ one correct term, M1 for complete correct expression and A1 for correct evaluation.
(iii)	$\begin{aligned} & P(\text { Dry given walk or bike })=\frac{\mathrm{P}(\text { Dry and walk or bike })}{\mathrm{P}(\text { Walk or bike })} \\ & =\frac{0.6 \times 0.9}{0.66}=\frac{0.54}{0.66}=\frac{9}{11}=0.818 \end{aligned}$	M1 for numerator leading to 0.54 M1 for denominator Ft their P(Walk or bike) from (ii) provided between 0 and 1 A1 FT	3	Allow 0.82 , not 0.819 More accurate answer $=0.81818$ Fractional answer $=54 / 66=27 / 33=9 / 11$ Condone answer of 0.8181 Do not give final A1 if ans ≥ 1
		TOTAL	8	

