Question		on	Answer		Guidance		
1	(i)	(A)	P(third selected) = $0.92^2 \times 0.08 = 0.0677$ Or = 1058/15625	M1 M1 A1 [3]	For 0.92^2 For $p^2 \times q$ CAO SC1 for 'without repla =0.0690	With $p + q = 1$ With no extra terms Allow 0.068 but not 0.067 nor 0.07 accement' method 92/100×91/99×8/98	
	(i)	(B)	$P (second) + P(third) = (0.92 \times 0.08) + (0.92^2 \times 0.08) = 0.0736 + 0.0677 = 0.1413 = 2208/15625$	M1 A1 [2]	For 0.92×0.08 FT their 0.0677	With no extra terms Allow 0.141 to 0.142 and allow 0.14 with working 43 from 'without replacement' method	
	(ii)		P(At least one of first 20) = 1 - P(None of first 20)	M1	0.92 ²⁰	Accept answer of 0.81 or better from $P(1) + P(2) +,$ or SC2 if all correct working shown but wrong answer No marks for 'without replacement' method'	
			$= 1 - 0.92^{20} = 1 - 0.1887 = 0.8113$	M1 A1 [3]	1 – 0.92 ²⁰ CAO	Allow 0.81 with working but not 0.812	

2	(i)	Jimmy 0.3	Jimmy Alan $\underbrace{\begin{array}{c} 0.4 \\ 0.6 \\ 0.7 \\ Jimmy \\ 0.3 \\ Alan \end{array}}$ $G1$ G1 G1 G1 G1 G1 G1 G1	Do a vertical scan and give: First column Second column Final column	All indep All probs must be correct Without extra branches in final column Ignore anything before third set Allow labels 'win' and 'lose' in place of Jimmy and Alan respectively but if no labels, no marks
	(ii)	P(Alan wins)	M1	For any one ' correct' product	FT their tree for both M marks Provided correct number of terms in
		$= (0.4 \times 0.3 \times 0.6) + (0.6 \times 0.4 \times 0.3)$		For all three ' correct' products and no extras	product(s) for both M1's
			A1 [3]	CAO	
	(iii)	P(Ends after 4) = $(0.4 \times 0.7) + (0.4 \times 0.7)$		For both products	FT their tree for M mark but not for A mark
	` '		A1	CAO	Provided two terms in each product
			[2]		

3 (i)	Because $P(T M) \neq P(T)$	E1 [1]	Or 0.8 ≠ 0.55	Or $P(T \cap M)$ (= 0.264) $\neq P(T) \times P(M)$, provided 0.264 in (ii) Or 0.264 \neq 0.55 \times 0.33 (=0.1815) Look out for complement methods, etc
(ii)	$P(T \cap M) = P(T / M) \times P(M) = 0.80 \times 0.33 = 0.264$	M1 A1 [2]	For product CAO	A0 for 0.26
(iii)		G1 G1 G1 [3]	For two labelled intersecting circles For at least 2 correct probabilities. FT their $P(T \cap M)$ For remaining probabilities. FT their $P(T \cap M)$, providing probabilities between 0 and 1	Allow labels such as P(T) etc Allow other shapes in place of circles No need for 'box' FT from 0.1815 in (ii) gives 0.3685, 0.1815, 0.1485, 0.3015

4 (i)	$P(X=0) = 0.75^6 = 0.178$	M1 for 0.75 ⁶ A1 CAO	2	Or from tables 0.1780 Or 729/4096 Allow 0.18 with working
(ii)	$E(X) = np = 50 \times 0.178 = 8.9$	M1 for product A1 FT	2	FT their answer to (i) providing it's a probability NB A0 if subsequently rounded
		TOTAL	4	

5 (i)		G1 for two labelled intersecting circlesG1 for at least 2 correct probabilities.G1 for remaining correct probabilities	3	Allow labels such as P(<i>W</i>) and P(<i>F</i>) Allow other sensible shapes in place of circles
(ii)	P(W) × P(F) = 0.14 × 0.41 = 0.0574 ≠ P(W∩F) = 0.11 So not independent.	M1 for 0.41×0.14 A1 Condone dependent Must have full method www Must have either P($W \cap F$) or 0.11	2	Answer of 0.574 gets Max M1A0 Omission of 0.0574 gets M1A0 Max Or: $P(W F) = 0.11/0.41 = 0.268 \neq P(W) (= 0.14)$ M1 for full working $P(F W) = 0.11/0.14 = 0.786 \neq P(F) (= 0.41)$ M1 for full working No marks without correct working
(iii)	$P(W F) = \frac{P(W \cap F)}{P(F)} = \frac{0.11}{0.41} = \frac{11}{41} = 0.268$ This is the probability that a randomly selected respondent works (part time), given that the respondent is female.	M1 for correct fraction A1 E1 For E1 must be in context – not just talking about events <i>F</i> and <i>W</i>	3	Allow 0.27 with working Allow 11/41 as final answer Condone 'if' or 'when' for 'given that' but not the words 'and' or 'because' or 'due to' for E1. E1 (independent of M1): the order/structure must be correct i.e. no reverse statement Allow 'The probability that a randomly selected female respondent works part time' oe
		TOTAL	8	

6 (i)	P(product of two scores < 10) = $\frac{13}{16}$ = 0.8125	B1	1	Allow 0.813 or 0.812
(ii)	P(even) × P(< 10) = $0.5 \times \frac{13}{16} = \frac{13}{32} = 0.40625$ P(even ∩ < 10) = $\frac{6}{16} = 0.375$ So not independent.	M1 for $0.5 \times \frac{13}{16}$ or $\frac{13}{32}$ FT their answer to (i) M1 for $\frac{6}{16}$ A1	3	Do not allow these embedded in probability formulae Also allow P(even <10) = $6/13 \neq P(even) = 1/2$ Or P(<10 even) = $6/8 \neq P(<10) = 13/16$ Or P(even <10) = $6/13 \neq P(even <10') = 2/3$ Or P(<10 even) = $6/8 \neq P(<10 even') = 7/8$ For all of these alternatives allow M2 for both probabilities. (M1 not available except if they correctly state both probabilities EG P(even <10) and P(even) and get one correct) If they do not state what probabilities they are finding, give M2 for one of the above pairs of probabilities with \neq symbol
		TOTAL	4	

7 (i) (ii)	$P(\text{Wet and bus}) = 0.4 \times 0.7$ $= 0.28$ $P(\text{Walk or bike}) =$	M1 for multiplying probabilities A1 CAO M1 for any two correct	2	Fractional answer = $7/25$ (Allow 28/100)
	$= 0.6 \times 0.5 + 0.6 \times 0.4 + 0.4 \times 0.2 + 0.4 \times 0.1 \text{ or}$ 0.3+0.24+0.08+0.04 = 0.66	pairs M1 for sum of all four correct terms With no extra terms for second M1 A1 CAO	3	Or = $0.6 \times 0.9 + 0.4 \times 0.3$ gets M1 for either term = $0.54 + 0.12$ gets M1 for sum of both A1 CAO Or = $1 - 0.6 \times 0.1 - 0.4 \times 0.7 = 0.66$. M1 for $1 - $ one correct term, M1 for complete correct expression and A1 for correct evaluation.
(iii)	P(Dry given walk or bike) = $\frac{P(\text{Dry and walk or bike})}{P(\text{Walk or bike})}$ $= \frac{0.6 \times 0.9}{0.66} = \frac{0.54}{0.66} = \frac{9}{11} = 0.818$	M1 for numerator leading to 0.54 M1 for denominator Ft their P(Walk or bike) from (ii) provided between 0 and 1 A1 FT	3	Allow 0.82, not 0.819 More accurate answer =0.81818 Fractional answer = $54/66 = 27/33 = 9/11$ Condone answer of 0.8181 Do not give final A1 if ans ≥ 1
		TOTAL	8	